Polyamines in aging and disease
Polyamines are polycations that interact with negatively charged molecules such as DNA, RNA and proteins. They play multiple roles in cell growth, survival and proliferation. Changes in polyamine levels have been associated with aging and diseases. Their levels decline continuously with age and polyamine (spermidine or high-polyamine diet) supplementation increases life span in model organisms. Polyamines have also been involved in stress resistance. On the other hand, polyamines are increased in cancer cells and are a target for potential chemotherapeutic agents. In this review, we bring together these various results and draw a picture of the state of our knowledge on the roles of polyamines in aging, stress and diseases.
INTRODUCTION
Polyamines have been known for a long-time as the first one, spermine, was discovered over 330 years ago by microscopic observation of human semen [reviewed in 1]. They have since been found in all eukaryotes and most prokaryotes. Polyamines are polycations (Figure 1) and thus one of their main features is to interact with negatively charged molecules, such as DNA, RNA or proteins. Given their promiscuity in binding other molecules, they are involved in many functions, mostly linked with cell growth, survival and proliferation. Three polyamines, putrescine, spermidine and spermine, are part of the very tightly regulated polyamine metabolic pathway. Polyamines are the subject of intensive research in order to elucidate their functions and involvement in physiology. Polyamines are important players in plant growth, stress and disease resistance [2], but they are also involved in diseases [3], for example Alzheimer’s or infectious diseases. The main research area for the involvement of polyamines in diseases is cancer, as high levels of polyamines are observed in cancer cells [3]. More recently, we have shown a causative role for polyamines in longevity [4]. This review will give an update on the field of polyamine research and begin with their metabolism and transport. Then we will discuss their involvement in aging, stress, diseases with a special section on cancer, and what is known of their mechanisms of action.
We argue that only by gathering information from all the various disciplines studying polyamines can we draw an accurate picture of their effects and mechanisms of action.
Polyamine metabolism and transport
The regulation of polyamine levels is achieved by a combination of synthesis, catabolism and transport. Below is a summary of these different processes. Polyamine metabolism is summarized in Figure 2. For further details, several excellent reviews and papers on this topic have been published and the reader is referred to them and the references therein [5-8].
Polyamine synthesis
Three main sources for polyamines exist in organisms: Food intake, cellular synthesis, microbial synthesis in the gut. Polyamines are synthesized from the amino acids arginine, ornithine and methionine. The first step in the pathway is the production of ornithine from arginine by the mitochondrial enzyme arginase. Ornithine is then decarboxylated by ornithine decarboxylase (ODC) to produce putrescine. ODC expression is tightly regulated from transcription to post-translational modifications. ODC antizyme directly inhibits ODC activity and is also responsible for facilitating ODC degradation by targeting it to the 26S proteasome. In parallel to putrescine production, L-methionine is converted into S-adenosyl-L-methionine (AdoMet), which is then decarboxylated by AdoMet decarboxylase (AdoMetDC) to produce decarboxylated AdoMet (DcAdoMet). DcAdoMet is then used as an aminopropyl group donor either to putrescine by spermidine synthase to produce spermidine, or to spermidine to produce spermine by spermine synthase.
Polyamine catabolism
The higher polyamines spermidine and spermine can be converted back to putrescine (Figure 2). The ratelimiting enzyme of polyamine catabolism is the cytosolic spermidine/spermine N1 -acetyltransferase (SSAT). SSAT acetylates both spermine and spermidine. Acetylated spermine and spermidine then move into the peroxisome where they are oxidized by polyamine oxidase (PAO). By-products of this oxidation include hydrogen peroxide (H2O2) and acetaminopropanal. SSAT is absolutely necessary for the formation of putrescine from spermidine. Spermine can also be back-converted into spermidine by spermine oxidase (SMO) in the cytoplasm. In contrast with PAO, the preferred substrate of SMO is spermine itself and not its acetylated derivative, acetylspermine.
Polyamine transport
Polyamine transport plays an essential role in polyamine levels regulation. Polyamine transport is well characterized in the bacterium Escherichia coli and the yeast Saccharomyces cerevisiae. Polyamine transport complexes have also been studied in plants. E. coli has two polyamine uptake systems belonging to the ABC transporters family. One system is a spermidine-preferential system and the second one a putrescine-specific system. Each system consists of 4 transporters: PotA to D for spermidine transport and PotF to I for putrescine transport. If any of the spermidine transporters is missing, spermidine uptake is abolished.
There are also two exporters (PotE and CadB), uptaking polyamines at neutral pH and excreting them at acidic pH. Finally, a spermidine excretion protein, MdtII was recently identified [9]. S. cerevisiae polyamine transport is energy-dependent and regulated mainly by phosphorylation and dephosphorylation. The proteins DUR3 and SAM3, and to a lesser extent GAP1 and AGP2, are responsible for polyamine uptake across the plasma membrane. Putrescine can be taken into the vacuole by the 4- aminobutyric acid transporter UGA4. TPO1 to 4 excrete polyamines at acidic pH (at which yeast cells usually grow) but uptake them into the yeast cell at pH 8. A polyamine preferential excretion protein, TPO5, has been identified on Golgi and post-Golgi vesicles. Recently, Teixeira et al. [10] showed that the gene QDR3, coding for a plasma membrane drug: H+ antiporter, is involved in resistance to spermine and spermidine, but not putrescine in yeast. Δqdr3 yeast cells grew less when plated on food containing spermidine or spermine at high concentrations. They accumulated more spermidine, suggesting it is likely involved in polyamine excretion.In mammals, the TATA-binding associated factor 7 (TAF7) rescues the lack of polyamine transport in methylglyoxal bis (guanylhydrazone) Resistant Chinese hamster ovary cells [11]. Antizyme, the protein responsible for ODC inhibition and degradation also enhanced polyamines and acetylpolyamines excretion. Finally, a diamine transporter has been identified in colon epithelial cells, which could be responsible for putrescine as well as acetylated polyamines excretion [12].
Despite these studies and substantial research in this area, no polyamine transporter has been identified in mammals. Alternatively, it is thought that polyamine uptake in mammals could be performed by endocytosis. Still, a set of characteristics that any polyamine transporter should fit has been defined and should help in the identification of polyamine transporters in mammals [13]. We have carried out a search for human homologues for the known polyamine transporters in E. coli and S. cerevisiae (Table 1 and supplementary table). It would now be interesting to study the hits we found and assess whether some of them can really transport polyamines.
Polyamines and aging
Polyamine levels decrease with age in many organisms [reviewed in 14], albeit polyamine- and tissuespecifically. For instance, Nishimura et al. [15] measured polyamine levels in 14 different tissues in 3, 10 and 26 week-old female mice and found that spermidine levels decreased in 11 out of the 14 tissues. In contrast, spermine decreased only in skin, heart and muscles. Putrescine levels were very low in all tissues at all ages. Vivó et al. [16] reported a negative correlation between spermidine content and age in several areas of the basal ganglia in human brains and a similar trend for spermine. More varied age-related changes have been observed when more brain areas were studied in rats [17]. We reported a decrease with age of spermidine content in yeast [4]. The concentrations of specific polyamines and molecular conjugates varied with stages of growth (seedlings, saplings and mature trees) in Pinus radiata [18].
The same authors reported that the total polyamine level increased but no difference in free polyamines was observed in Prunus persica. Despite these correlative changes in polyamines with age, it is only recently that the causative involvement of polyamines in the aging process has been investigated. The study of the effects of polyamines on aging seems to be more advanced in plant biology, where they have been identified as “juvenility” factors for some time. For instance, Serafini-Fracassini et al. [19] showed that spermine treatment delayed senescence in excised flowers of Nicotiana tabacum. After 48 hours, 70% of the flowers were still at the stage at which they had been cut (anthesis or peak bloom) whereas in the controls, 50% were at an early senescence stage and the other 50% senescent. Spermine delayed DNA degradation and preserved chlorophyll content. Spermidine and putrescine also delayed senescence of excised flowers, but to a lesser extent than spermine. More recently, the same group [20] studied senescence in Lactuca sativa. In cut leaves, spermine postponed chlorophyll loss, as observed in N. tabacum, probably via chlorophyll stabilization by a higher transglutaminase activity. In intact plants, the same preservation of chlorophyll and higher transglutaminase activity were observed after spermine spraying, especially in senescent plants. In contrast, the treatment did not affect the protein content decrease observed with age.
Transgenic animal models, particularly rodents, have been designed to modulate the activity of the polyamine pathway. However, these models have rarely been used in the context of studying aging. Suppola et al. [21] reported the creation of a mouse model overexpressing both ODC and SSAT under the methallothionein I promoter. These mice accumulated high levels of putrescine and exhibited a depletion of spermine and spermidine. They showed no overt organ-specific histopathological changes, but permanently lost their hair at 8 to 9 weeks of age. This hair loss was already observed in single transgenics for SSAT overexpression, which also exhibited extensive wrinkling upon aging. Finally, the double transgenic mice were very short-lived. Cerrada-Gimenez et al. [22] also reported a decreased life span in mice overexpressing SSAT. They noticed that in these mice, p53 expression in the liver was increased and that the SSAT overexpressing mice exhibited similar aging phenotypes to mice with activated p53 expression. However, it is difficult to really know if such phenotypes reflect an acceleration of the aging process or whether they reflect a general disturbance of the organism physiology leading to general weakness. Another strategy to study the effects of polyamines in aging is an exogenous administration to organisms. When polyamines are provided with food or water, their endogenous levels increase.
For instance, Soda et al. [23] observed an increase in spermine after 26 weeks in mice and after two months in humans under a highpolyamine diet. We also reported [4] that providing spermidine in food or water increased its endogenous levels in yeast, flies, and mouse liver. This is thus a promising strategy, particularly valuable in the context of extending polyamine use to humans. Using such an experimental approach to modulate polyamine levels, Soda et al. [24] fed male mice a low, normal or highpolyamine chow. They showed that mortality in mice fed a high-polyamine chow was lower in the first 88 weeks. Unfortunately, the mice were sacrificed at 88 weeks of age, precluding the gathering of mortality data after that age. The authors also reported a lower incidence of age-related kidney glomerular atrophy kept on high-polyamine diet. Finally, they observed that old mice on high-polyamine chow kept a thicker coat with age and appeared more active. However, these last two observations were only qualitative as coat thickness and activity were not measured. The lower mortality in mice fed a high-polyamine chow was not due to a dietary restriction effect as these mice ate more than the other two groups and exhibited similar body mass measured between 11 and 55 weeks of age. These results are promising and further studies in rodents are urgently required. We have recently published a study following the consequences of external spermidine administration in various model organisms, including yeast, worms, flies, mice and human cells [4].
Spermidine increased chronological life span in wild-type yeast as well as remaining replicative life span in old yeast cells. In contrast, a Δspe1 yeast mutant unable to synthesize polyamines was short-lived. This decreased life span was rescued by spermidine as well as by putrescine addition. We also showed that spermidine supplementation increased life span in the nematode worm Caenorhabditis elegans by 15% and in the fly Drosophila melanogaster by up to 30%. At the cellular level, spermidine increased survival of human peripheral blood mononuclear cells after 2 days from 15% in the controls to 50% by preventing death from necrosis. These results strongly suggest that spermidine could represent a new preventive agent in our fight against aging. However, so far research has mainly focused on the effect of spermidine on life span and now it is important to study its effect, as well as the potential effects of other polyamines, on aging per se and quality of life (healthspan).
Polyamines and stress
Organisms are regularly exposed to stress and the ability to resist stress is a part of survival strategies. Various studies showed that polyamines had important roles in and generally correlate with stress resistance. Again, plant biology has been at the forefront of this research area. Readers are particularly refereed to a recently published excellent review on the subject [2].
Polyamines are particularly important for adaptation and resistance to cold stress [reviewed in 25] and polyamine levels increase in plants during abiotic stress such as salinity, extreme temperature, paraquat or heavy metals. This regulation of polyamines under stress is achieved by differential expression of polyamine biosynthesis enzymes, such as arginine decarboxylase, spermidine and spermine synthase or AdoMetDC. Exogenous application of polyamines led to, in varying degrees, preserved membrane integrity and lower growth inhibition during stress, reduced accumulation of ROS and increased activity of antioxidant enzymes such as catalase. In contrast, polyamine synthesis inhibitors triggered decreased stress resistance, a phenotype counteracted by the simultaneous treatment with polyamines. Mutants in arginine decarboxylase or spermine synthase are sensitive to stress. Using another approach to study the role of polyamines in stress resistance, many groups have engineered plants to overexpress polyamine biosynthesis genes, especially arginine and ornithine decarboxylases and AdoMetDC. Many studies are described in [2] and only a few, published later are reported here. Mohapatra et al. [26] studied aluminum stress in interaction with calcium in poplar cell cultures with normal or high levels of putrescine. Reducing or increasing the amount of calcium had no effect on growth in the control cells except when drastically reduced, but respectively decreased and increased growth in cells with high levels of putrescine.
The addition of aluminum with normal or low calcium again had no effect in the control cells. In contrast, the cells with high putrescine content exhibited a better growth. These latter had a lower mitochondrial activity than control cells, but a higher mitochondrial activity after 48 hours of exposure to aluminum. Taken together, these results suggest that in these cells, a high putrescine content is a disadvantage in a low-calcium environment but an advantage in the presence of aluminum. Wang et al. [27] cloned the arginine decarboxylase gene from trifoliate orange and carried out its functional study in transgenic Arabidopsis. The transgenic plants had higher levels of putrescine but not of spermidine and spermine. They displayed a lower stomatal density, longer roots, larger cell size and higher relative water content than the controls both in normal conditions and under stress. They had similar germination to the controls in normal conditions and germinated better under osmotic stress. During dehydration, the transgenic plants lost less water, had a better electrolyte leakage and leaf turgor. Upon sustained dehydration, they exhibited better growth, survival and electrolyte leakage. The transgenic plants were also more resistant to cold. This higher stress resistance might be due to lower accumulation of H2O2, O2 - and lipid peroxidation. Finally, A. thaliana overexpressing spermine synthase or wild-type exogenously supplied with spermine were shown to be more resistant to infection with Pseudomonas viridiflava.
In contrast, mutants in spermine synthase with low levels of spermine were less resistant to the same infection [28]. In model organisms, the effect of polyamines on stress resistance has not been so widely studied, but as in plants, has shown various results. SSAT overexpressing mice exhibited an increased production of H2O2 from polyamine degradation, a higher carbonyl content, and a decreased expression of superoxide dismutase (SOD), catalase and CYP450 2E1, suggesting these mice may be more prone to stress [22]. However, these mice were more resistant to thioacetamide or carbon tetrachloride, because these compounds need to be metabolized before becoming toxic, and were not metabolized to the same degree in the transgenic mice. Kaasinen et al. [29] had earlier shown that SSAT overexpressing mice exhibited decreased spontaneous activity, climbing and wheel running behavior. The transgenic mice were more phlegmatic and less aggressive. They had increased levels of ACTH and corticosterone, and decreased levels of TSH and T4, again suggesting they may be more prone to the effects of some stress. Putrescine, spermidine and spermine decreased survival under hypoxia in D. melanogaster [30]. In contrast, we have shown [4] that spermidine treatment increased resistance to heat and H2O2 in yeast. It also decreased age-related oxidative stress in mice as measured by higher levels of free thiol groups. Markers of oxidative stress were also reduced in yeast. From these studies, we can conclude that polyamines are involved in stress resistance but in a much more complex way than just allowing a general higher resistance to stress when present at higher levels.
Polyamines and diseases
Many diseases are associated with cellular dysfunction, such as aggregation of insoluble compounds, uncontrolled cell death, and anarchic cell proliferation as in cancers. As regulators of cell growth and death, it is likely that polyamines may affect the severity and process of diseases. Polyamine levels increase in many diseases [see Table 2 in 3]. As polyamines also regulate growth in pathogens, they may have an impact on infectious and parasitic diseases as well. However, as for aging and stress resistance, polyamines have different effects in different models and on different diseases. We will review here some of the results, focusing on age-related diseases and infection. The relation between cancer and polyamines will be reviewed in the next section. Vivó et al. [16] reported negative correlations between age and spermidine in several areas of the basal ganglia in human brain, but found no difference between controls and Parkinson’s disease, Huntington’s disease and progressive supranuclear palsy patient’s brains. More than 90% of circulating spermidine and over 70% of spermine are associated with red blood cells. GomesTrolin et al. [31] observed that in red blood cells, putrescine levels decreased in Parkinson’s disease and amyotrophic lateral sclerosis patients. In contrast, spermidine and spermine increased in both sets of patients. There was no correlation between the levels measured and the severity of the disease. Earlier, Yatin et al. [32] suggested a possible involvement of polyamine metabolism in Alzheimer’s disease.
1.888.394.3394
1.307.218.9831
www.FWGERX.com
fwgerx@gmail.com
Sheridan Wyoming, USA
*These statements have not been evaluated by the Food and Drug Administration. These products are not intended to diagnose, treat, cure or prevent any disease.
All sales final
avemar avemar success stories avemar supplement ave mar avemar cancer avemar pulvis avemar wheat germ extract avemar reviews avemar canada avemar dosage avemar for cancer avemar fermented wheat germ avemar cancer testimonials avemar for dogs fermented wheat germ extract canada fermented wheat germ for dogs avemar cancer treatment immunovet for dog sh-86 cancer treatment avemar side effects avemar tablets avemar where to buy what is avemar avemar fermented wheat germ extract fermented wheat germ extract how to make avemar avemar hungarydoes avemar really work fermented wheat germ extract cancer oncomar avemar film tabletta immunovet ave ultra fermented wheat germ buy avemar avemar ingredients fermented wheat germ wheat germ extract avemar tablete avemar uk aveultra cancer fwge h86 cancer treatment hidvegi immunovet review metatrol reviews metatrol vs avemar stevia america tracey yeend wheat germ extract afemarall natural cancer treatment alterna- tive cancer treatment canada alternative cancer treatments canada alternative cancer treatments in canada andrew hidvegi animal cancer care anti cancer supplements for dogs apoquel and cancer apoquel and lymphoma arveemar ashawaganda ashawaganda benefits avemar authentic canada authentic supplements authentic supplier authentic usaave ultraave promagneavechi tablets avemar australia avemar cena avemar forum avemar granulátum avemar granule avemar group avemar hu avemar kaufen avemar nz avemar prah avemar prospect avemar recenzie avemar skusenosti avemar.com avemar.huavemat avemr avemrmar avermar aveultra avexima tablets awge awemar awge awge com awge forum awge logo awge shop awge website